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THE SPACE, TIME, AND ENERGY DISTRIBUTIONS OF THE PROTON BEAM
OF THE HARVARD UNIVERSITY SYNCHROCYCLOTRON

ABSTRACT Jo 240

The space, time, and energy distributions of the proton beam of the
Harvard University Synchrocyclotron were measured. The spatial distribu-
tion was estimated from multiple-scattering approximations and measured
by means of x-ray films and a beam profile counter telescope. Experimen-
tal results may be approximated by a Gaussian function with ¢ = ip.28 cm,
with agreement between the observed results and the multiple-scattering
estimates being favorable. Ninety-eight percent of the protons were con-
tained in an 0.84-cm beam radius. Analysis of the macroburst structure
revealed a gross duty cycle of (4 + 2)%, depending upon proton injection
and extraction parameters. Oscilloscope observations of the microstruc-
ture showed that the protons occurred at regular 42-nsec intervals, with
the width of the time distribution of protons being less than T nsec.
With the delayed coincidence technique, the standard deviation of the
time between adjacent bursts of protons was 1.4 nsec.

The proton beam energy was determined from measurements of the pro-
ton range in copper and from time-of-flight measurements. The beam
energy determined from the range measurements was 160.3 + 0.6 MeV. The
rms range spread was measured from the differential range curve as 0.34 +
0.05 g/cme, compared with the calculated straggling standard deviation
of 0.32 g/cmz. The proton energy measured by flight-time analysgis over
a 355-cm flight path was 153.38 + k.1 MeV.




INTRODUCTION

Experiments performed at the Harvard University Synchrocyclotronl’2
to determine the energy spectra at various angles for secondary neutrons,
brotons, and gamma rays required that the space, time, and energy dis-
tributions of the proton beam be well known. Knowledge of these param-
eters was necessary for the design of experimental instrumentation and
for the analysis of the spectral data.

The synchrocyclotron (shown in Fig. 1) is shielded by concrete 3 to
8 ft thick and is a frequency-modulated machine capable of producing un-
polarized 160(+2%)-MeV protons at rates as high as 5 x 100 protons/sec.
Modulation is achieved with a rotating 16-tooth condenser through a fre-
quency range of 23 to 30 MC/ sec.

Following extraction, the beam is passed through three sets of col-
limating slits, a steering magnet, and finally a quadrupole magnet. Beam
location is controlled by the steering magnet, and focusing is achieved
by optimizing the slit openings and the quadrupole magnet current.

BEAM DISTRIBUTION IN SPACE

The spatial distribution of protons perpendicular to the beam axis
was measured to determine the region where primary reactions might have
occurred in the bombarded target. The distribution at the target was
estimated from multiple-scattering distribution approximations and was
experimentally determined from measurements made with x-ray films and
a beam profile counter telescope. The results were compared and the
fraction of protons striking the target was estimated. For all spec-
tral measurements, 1,2 the size and shape of the beam were essentially
the same, and the results of calculations for estimating proton losses

are applicable in all experiments.

1. DNeutron Phys. Div. Amn. Progr. Rept. Aug. 1, 1963, ORNL-3499,
Vol. II.

2. Neutron Phys. Div. Space Radiation Shielding Research Ann. Progr.
Rept. Aug. 31, 1962, ORNL CF-62-10-29 (Rev.),pp. 182-263.
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Calculation of the Proton Distribution

When charged particles pass through materials of finite thickness,
they undergo large numbers of electromagnetic collisions. The sequence
of multiple collisions is characterized by numerous randomly oriented
small-angle deflections, together with a smaller fraction of large-
angle single-scattering deflections.

The scattering of these particles may be represented by the root-
mean-square angle of scattering arms , and when the multiple scattering
dominates, the rms angle is proportional to the square root of the
thickness of the scatterer. The scattering gives rise to a spread of
the beam perpendicular to the direction of motion. The distribution
of protons after multiple scattering can be approximated by a Gaussian
function given by

2
P(r) = (nri)-l e-(r/ro) ’ (1)

vhere P(r) is the probability per unit area of finding a particle with
rms displacement, r, from the beam axis:

r =8 D, (2)

with D being the distance from the scatterer to the point at which the
distribution is measured. Equation (1) gives the first-order approxi-
mation to the multiple-scattering distribution.

Snyder and Scott, 3

using Fourier transforms, obtained a general
expression for the scattering density function including all orders
of scattering. They give the results of their calculations in graphic
form over a wide range of target thickness and scattering angle.
Figure 2 compares the full Snyder-Scott results with the (Gaussian)
miltiple-scattering approximation. The notation used is that of
Snyder and Scott: 1 is proportional to the projected scattering

angle Gy, and q(s,n) is proportional to the probability density

3. H. S. Snyder and W. T. Scott, Phys. Rev. 76, 270 (1949).
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function defining the fraction of protons in an angular interval
dey about ey' The scatterer parameters were chosen similar to those
encountered in this experiment.

Plotting the results of Fig. 2 on a linear graph reveals that the
ratio of the area between the Gaussian curve and the scattering tail to
the area in the peak is negligible. The Gaussian multiple-scattering
approximation gives sufficiently accurate results for estimating the
scattering distribution at the target plane.

For this report, the scattering distribution at the target plane
is obtained by using the Gaussian approximation only, and the fraction
of protons at the target is calculated by the procedure suggested by
Sternheimer.u

The rms angle of scatter of Eq. (2) is calculated from the expres-
sion

2
=) %g‘%{ : (3)

where E is a constant equal to 21 MeV, Bc is the velocity of the inci-
dent pa.rblcle, p is its momentum, (X ) is the multiple-scattering
length in g/ cm of the ith scatterer materiaJ and x; is the thickness

of the material in the beam. The scattering distribution is determined
for the passage of the proton beam through the two monitor ionization
chambers shown in Fig. 1. The combined scattering length of the chambers
is obtained from the summation in Eq. (3). In passage through the cham-
bers, the beam is scattered by 8 mils of aluminum, 2.5 mils of aluminized
Mylar, and 5.0 cm of helium gas. Included is an additional 5-mil-thick
Mylar beam pipe window. The scattering length of the combination of
materlals is equivalent to 0.078 g/ cm® of aluminum, where (X )

23.9 g/ cm « This value is used in all subsequent ca.lculatlons. Defining

= p /R

k. R. M. Sternheimer, Rev. Sci. Instr. 25 (11), 1070-1075 (1954).




and

r = ro/R ’

where p0 is the rms radius of the assumed normally distributed unscat-
tered beam, r, the rms scattering radius as in Eq. (2), and R the

radius of the target, the fraction, fp, of protons striking the target
may be obtained directly from Sternheimer's curves. The value for po,
for this reporting, must be estimated since in the experiment no measure-
ments were made of the unscattered beam radius. However, from photo-
graphs made at various points along the beam axis, reasonable estimates
for the unscattered beam radius give po = 0.17 em. The results of

these calculations are given in Table 1.

Experimental Results

The beam distribution was experimentally determined by exposing
five x-ray film plates in a beam of nominally U4 x 106 protons/ sec. The
exposure, determined from the charge collected in the ionization chambers,
was made over a range of 1.6 ( +0.080) x 10| to 1.3 ( +0.065) x 10° pro-
tons. The individual plates were developed simultaneously to ensure uni-
form transparency in the unexposed portions of the film. Initial analysis
was achieved by measuring the fraction of light transmitted through the
image by scanning with a photodensitometer. The slit openings of the
densitometer were adjusted for a minimum opening of 10-p width and O.7-mm
height. The scanning speed was 5 mm/min. The results of scanning the
five plates are shown in Fig. 3. The profiles were aligned by defining
the center of the full width at half maximum (FWHM) value of the trans-
mission curves as the beam center line. From these data it was possible
to construct the composite distribution curve shown in Fig. 4. This was
done as follows.

1. The peak of the l-nanocoulomb exposure curve, shown in Fig. 3
and defined as unit relative beam intensity, was plotted as point A on
Fig. k.

2. Pollowing a line of constant transmission, shown by the dotted

line in Fig. 3, the remaining transmission curves were intercepted at




TABIE 1. Comparison Between the Estimated Fraction of Protoms, fp,
and Experimentally Measured Fraction of Protons, f a’ Striking
the Target as a Function of the Target Radius R

. (@) o ()
R r! = _o p' = 2 f f
< (cm) R R P d
) 3.8 0.083 0.0kk 1 1
0.8k 0.376 0.202 0.98 0.98
0.56 0.564 0.304 0.9k 0.86
0.28 1.120 0.607 0.35 0.39
3

%pased on r, = 0.316 cm, D = 101.5 em, and erms = 3.11 x 10 ° radian.

b
po = 0.17 cm.
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points B, C, D, and E. Point B has the same width dimension as the
20% transmission level on the first curve, for example. The remaining
points beyond these four were estimated from a calibration curve of
the exposure-film density relationship obtained from the transmission
curve data of Fig. 3.

The proton distribution was also measured with the profile tele-
scope shown in Fig. 5. The distribution was obtained by scanning hori-
zontelly and vertically perpendicular to the beam axis and recording
coincidence counts for fixed increments of integrated beam current as
a function of displacement from the beam center at a distance of approx-
imately 1 m from the ion chamber. The values obtained for FWHM for
both the vertical and horizontal scan as well as other points on the
distributions were in agreement, suggesting that the beam cross section
was essentially circular. Figure 6 plots proton intensity as a function
of the distance from the beam center line as obtained with the profile
telescope.

The distribution curves in Figs. 4 and 6 are essentially Gaussian
in shape. It was assumed from the exposures that the beam cross section
was very nearly circular. If both conditions are true, the fraction of

Protons f. contained within a radius d may be estimated from integration

d
212 _

of a Gaussian frequency curve for the fitted value of <
0.28 + 0.0l cm. Agreement between the x-ray film exposures and profile
telescope data is excellent. Using the Gaussian frequency curve given
above, integration of the curves in Figs. 4 and 6 gives the sesme results

for fd as shown in Table 1.

Beam Iocation Stability

Measurements of the time drift of the beam location with respect
to the target center line were made with Polaroid film exposures in the
target plane. Initially, the beam was centered on the target by proper
location of the spectrometer holder and target positioning device. The
location of the beam was checked several times during a particular experi-
ment. It was observed that the beam drift was less than 5 mm/day with
respect to the target center. Corrections for the drift were made by ad-
Justment of the steering magnet.
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DISTRIBUTION IN TIME

The distribution of the proton beam in time was determined from the
measurement of the gross structure of the beam associated with the modula-
tion frequency (macrostructure) and the fine time structure due to the
r-f accelerating frequency (microstructure). In a synchrocyclotron the
proton beam is extracted only when the frequency of the accelerating volt-
age is within a narrow range. In the Harvard synchrocyclotron, frequency
modulation is achieved by a 16-tooth rotating capacitor operated at nomi-
nally 18 rps. Consequently, there are 288 bursts of protons per second.
Because of variations in the shape of the capacitor teeth, wobble in its
shaft, and variations in the rotation speed, the shape of the individual
prroton bursts varies in intensity and duration. In order to assess the
effect of variation of the machine parameters on the gross duty cycle, the
macroburst structure was studied as a function of ion source position and

extraction freguency.

Measurement of the Macrostructure

The burst structure was measured with the circuit shown in Fig. 7.
An organic detector was positioned in the beam. A marker pulse was avail-
able on the downswing of the M cycle just before proton extraction; so
the elapsed time between the marker pulse and a subsequent proton signal
was analyzed and stored. The macrostructure was analyzed for the bursts
associated with selected teeth of the rotating condenser and also for the
composite structure. The duty factor was measured for the composite
structure.

The gross duty factor can be obtained by measuring the ratio of the
square of the average height of the burst to the average value of the
height squared. The burst height is proportional to the output current
from the detector used in Fig. 7. So the duty factor is obtained from

<I> (%)

vhere I is the time-dependent phototube current averaged over the rf
(22 Mc) fine structure.
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pulse-height analyzer. With this mode of operation, the analyzer associ-
ates a channel with the voltage of the negative pulse feeding this input
at the time that the trigger pulse arrives from the proton detector. Zero
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causes storage in @ channel corresponding to the time that a proton ap-
peared in a macroburst relative to the phase of the frequency modulation.
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A typical composite burst shape is shown in the inset in Fig. 7. By
approximating the burst by a triangle, rectangle, or both, the macroduty
factor can be obtained quite readily by using this definition. Typical
>

values obtained were (4 + 2)%. The value obtained by Lefrancois” using
Eq. () to evaluate current from a phototube viewing a plastic scintilla-
tor was (3 + 0.2)%. Zobel and Maienschein6 have reported values ranging
from 2.4 to 4.9% by measuring random coincidence events during several
runs. Values for the duty cycle of 2.2 to 4.55% were measured for a 5%
variation in the extraction frequency, and 2.8 to 4.9% for variations in
the ion source orientation at the extraction frequency of maximum duty
factor.

In calculations that Peelle and Cowperthwaite

from individual proton-counting measurements, the duty factor was measured

1 made by using data

as 2% for very low counting rates and narrov B slit openings (see Fig. 1).

Measurement of the Microstructure

A further study of the burst structure reveals a finer distribution
of protons, called the "microstructure,"” with bursts occurring at the rf
accelerating freguency. Knowledge of the microstructure was essential in
the design of fast-timing circuits and gating circuits. The gating cir-
cuits were used to enable the detectors to operate only during the micro-
bursts to minimize the accumulation of background counts due to secondary
neutrons.

In measuring the microstructure an oscilloscope was used to observe
individual proton pulses from a detector placed in the beam, together
with the beam profile telescope, for which delayed coincidence techniques

were used.

5. J. Lefrancois, Rev. Sci. Instr. 32, 986 (1951).

6. W. Zobel and F. C. Maienschein, private communication.

7. DNeutron Phys. Div. Ann. Progr. Rept. Aug. 1, 1963, ORNL-3499, Vol. II,
p. 73.
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The pulses from an organic scintillator placed in the proton beam
were used simultaneously to trigger an oscilloscope and provide the ver-
tical input. The fine time structure was measured by observing on the
cathode ray tube the relationship between the proton-induced trigger
pulse and the pulse formation due to subsequent protons. The pulse
frequency was constant, nominally 22.7 Mc/sec, with the width of the
distribution of protons being less than T nsec. Observations made of
the microstructure for many thousand pulses showed that the pulses oc-
curred at regular intervals of ~ 42 nsec, and in no case was there any
evidence of structure between the main pulses.

In the microstructure measurements with the profile telescope, the
delay in one leg of the circuit was varied until coincidence was estab-
lished between successive bursts. The amount of delay is the time be-
tween bursts. The telescope, initially set up to measure the beam
profile, was located at one edge of the beam in order to count approxi-
mately 1 proton/sec. Typical resolution for coincidence varied from
3.5 to 6.2 nsec, depending on the coincidence circuit used. The re-
quired delay to establish coincidence between microbursts varied from
41.2 to Ul nsec, with the breadth of the peak varying from 4.5 to 6.3
nsec for the above resolving times. Typical results are shown in Fig. 8.

The time spectra of Fig. 8 can be approximated accurately by a
Gaussian distribution, and its variance computed by the usual methods.
The coincidence resclution curve is approximately trapezoidal in shape.
The time distribution of pulses in adjacent microbursts can be calculated
by taking the difference between the variance of the Gaussian and that of
the trapezoidal distributions. The value obtained for the standard devi-
ation of the time between pulses in adjacent bursts is 1.4 nsec.

PROTON ENERGY DISTRIBUTION

The energy distribution of the proton beam was determined from
measurements of the proton range in copper and from flight-time measure-
ments. These measurements were made in order to determine the energy

of the beam after passage through the monitor ionization chambers shown
in Fig. 1.
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Beam Fnergy from Proton Range in Copper

Two independent measurements were made of the proton range in cop-
per, one by Johnson8 (in September 1962) and the other by Santoro and
Love (in January 1963), and different absorber blocks and detectors were
used.

Two detectors were located in the beam path as shown in Fig. 9.

The coincidence counts were recorded as a function of the thickness of
the absorber placed between the two detectors for a fixed number of pro-
tons measured by the "A" detector, and are plotted in Fig. 10 for both
measurements. The energy is determined from the curve by treating the
maximum slope of the integral curve (the peak of the differential curve)
as the mean range from protons of the incident energy in copper. This
corresponds approximately to one-half the count rate with no absorber
Present.

The Range from Johnson's Measurements.-- The amount of copper pres-

ent at the mean range was 26.326 g/cm2. Preceding the copper were
51.4 em of air, 0.159 cm of CH, and 0.0051 cm of Al, corresponding to
0.062,0.168, and 0.0Llk g/cm2 surface density, respectively, for each
material.

The ratio of (dE/dx)R, the average energy loss per unit path length
of a given material R, to (dE/dx)Cu is a slowly varying function of en-
ergy, and conversion to equivalent copper thickness depends only on
approximate values for the incident energy. Using 160 MeV to evaluate
these ratios, Johnson obtained a total copper-equivalent thickness of
0.348 g/cme. Including an additional 0.0l1 g/cm2 copper equivalent
thickness for the small amount of air between the absorber and the "B"
detector, the total amount of material in the beam was equivalent to
26.755 g/cm? of copper.

In these calculations, there were two main sources of error: the

determination of the total copper thickness and the conversion between

8. C. F. Johnson, private communication. No information was availsble
concerning B bias, which is here presumed to be very low. No
uncertainty was given for determining the mean range from the exper-
imental data.
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the mean range and energy. Measurements of the volume density of the
copper introduced s ip'19% error for one standard deviation based on
measurements of the absorber dimensions and weight. Errors due to
conversion to energy are discussed later. Then, finally, the mean
range obtained by Johnson for the beam protons in copper is 26.755 +
0.051 g/cmz.

Range Due to Santoro and Iove. -- The second of the range-energy
measurements was made with the apparatus shown in Fig. 9. The bias
level of the "B" detector was set to count protons with energy in ex-
cess of 2 + 0.5 MeV. The bias was determined by using the 0.51l-and
0.393-MeV gamma rays of ezua and 113Sn, respectively. The uncertainty
in the measurement of the energy resulting from the use of this bias

setting was less than 0.1%, well within the other uncertainties.

The mean range of the protons was reached with 26.61 + 0.1 g/cm?
of copper. Using a code due to Wachter,9 the additional material in
the beam - the air, detector material, and aluminum detector covers -
was calculated in terms of the equivalent thickness of copper as
0.376 g/cm?, giving a total of 26.98 + 0.1 g/cm2 of copper.

The absorber plates were constructed to tolerances known to be
better than 0.1%, and the weight was determined to the same order of
magnitude. The volume density values for the air, aluminum, and detec-
tor materials were based on published wvalues and since they constitute
less than 2% of the material in the beam, only small errors were intro-
duced in the conversion to equivalent copper thickness.

The value for the beam mean range in copper was then determined as
26.98 + 0.1 g/cme, which is consistent with the value obtained earlier by
Johnson and is used in this report to determine the beam energy. This
range must be corrected for the multiple scattering of the protons in

copper. The correction value, 0.5% in range, was estimated from

9. J. W. Wachter, ESCALATOR, a program for the IBM-7090 which uses
interpolation of range-tables to determine accumulative energy
losses through various regions of materials (unpublished).
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Bichsel's data for multiple scattering in nickel.'® The resulting

experimental path length in copper is 27.1l + 0.1 g/cm?.
Conversion of Path Iength to Energy. -- The conversion of range to

energy is based on published values for the path length of protons in
copper, based on the average energy loss per g/cmg, dEde, obtained from
the integration of the Bethe-Bloch equation

Z C. \
B2 i
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where

X = path length, cm,
= charge number of the incident particle,
= charge number of the stopping material,

atomic weight,

o > N N
I

= v/c, where v is the velocity of the particle and ¢ is the speed
of light,
N = Avogadro's number,
e = electronic charge,
m_ = rest mass of the electron,
I = average excitation potential per electron of stopping atom,
¢y = "shell-correction” term to compensate the effect of nonpartici-

pating bound electrons.

According to the extent to which corrections are made for the Ci
term and depending on the choice of experimentally determined values for
I, values published for dE/dx may differ by a few percent.

For this report, Bichsel'slO values are used. These data are
based on recently determined values for I and extensive corrections

using the Ci terms. Additional credence has been given to Bichsel's

10. H. A. Bichsel, Passage of Charged Particles through Matter,

Amgrican Institute of Physics, Handbook, 2nd Ed., McGraw Hill,
1963.
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data in a more recent report by Fano.ll Table 2 shows a comparison,

over an energy range of 140 to 180 MeV, between Bichsel's values and

those of Peelle,'? Sternheimer,'> Rich and Madey, ' and Williamson

and Bou.jot.]'5

B:I.chsell6 has noted a discrepancy between the calculated values for
the mean range of protons in copper and those obtained experimentally.
In the energy range between 70 to 110, at 150 and 190 MeV, experimental
path lengths are 1.5% greater than Bichsel's best computed values. Ac-
cordingly, the values in Table 2 for the path length are corrected for
the 1.5% difference, and the mean proton energy is computed. An un-
certainty in the correction value of 0.5% is estimated.

The final calculated beam energy at the ionization chamber was
160.3 + 0.6 MeV.

The range spread may be obtained by differentiating the range
energy curve. The expected fluctuation in the path length of the pro-
tons is Gaussian with the ratio of the rms fluctuation, o, to the total
path length P given by

V)] e

11. U. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963)

12. R. W. Peelle, unpublished. These data use essentially the same
parameters used by Bichsel.

13. R. M. Sternheimer, Phys. Rev. 115(1), 137 (1959).

1k. M. Rich and R. Madey, Range-Energy Tables, UCRL-2301 {(March 1954).

15. C. Williamson and J. P. Boujot, Tables of Range and Rate of Ener
Ioss of Charged Particles of Energy 0.5 to 150 MeV, Report No. 2139,
Centre d'Etudes Nucleaires de Saclay.

16. H. A. Bichsel, Higher Shell Corrections in Stopping Power, Tech.
Rept. No. 3, Department of Physics, University of Southern
California, Los Angeles.
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where Mc2 is the rest mass energy of the proton in MeV, E is the kinetic
energy of the proton, and f (E/Mcz) is obtained from B:Lchsel'slo work
for range straggling.

For 160-MeV protons, f (E/Mcz) = 3.6% and 0 = 0.32 g/cm2 when P
is 27 g/ cm2 as above. The measured straggling standard deviation ob-
tained from the differential range-energy curve is 0.34 + 0.05 g/ cm.

Measurement of the Proton Energy by Flight Time

The proton energy was also determined by measuring the flight time
of the protons, with the apparatus shown in Fig. 11, over a distance
of 355 + 1 cm. With the "A" and "B" detectors positioned about 75 cm
apart, a calibration curve of stop delay vs analyzer channel number
was obtained. The "B" detector was then moved 355 cm farther away,
and the experiment was repeated. The time required for the protons
to travel 355 cm was obtained from the amount of change in the stop
delay required to re-establish time coincidence. From these data,
which are shown in Fig. 12, the time required for the protons to travel
355 cm was 23.26 + 0.1 nsec. The uncertainty, thought to come from
the differential nonlinearity of the time-to-pulse-height converter,
arises from consideration of several points along the curve in Fig. 12.

The error in the measurement of the flight path is 0.27%. A 1%
standard error in the delay line calibration also exists, so that the
total error in the measurement of the flight time is 1.1%. The proton
velocity is then 15.26 + 0.17 cm/nsec. Correcting for the energy loss
(1.38 MeV) of the protons in the "A" detector and air, the beam energy
determined by flight time is 153.38 + 4.1 MeV.

Conclusions to the Proton Beam Measurements

The energy obtained from the range-energy measurement, 160.3 +
0.6 MeV, and that obtained from the time-of-flight measurement, 153.36 +

k.1 MeV, are in mild disagreement. Both values, however, are in agree-

17

ment with published™ ' values for the beam energy of 158 + 2 MeV.

17. F. T. Howard, Cyclotrons and High Energy Machines, ORNL-2644
(1958).
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